本站面向开发者与科研用户,提供开源镜像的搜索和下载加速服务。
所有镜像均来源于原始开源仓库,本站不存储、不修改、不传播任何镜像内容。

yolov5 Docker 镜像下载 - 轩辕镜像

yolov5 镜像详细信息和使用指南

yolov5 镜像标签列表和版本信息

yolov5 镜像拉取命令和加速下载

yolov5 镜像使用说明和配置指南

Docker 镜像加速服务 - 轩辕镜像平台

国内开发者首选的 Docker 镜像加速平台

极速拉取 Docker 镜像服务

相关 Docker 镜像推荐

热门 Docker 镜像下载

yolov5
ultralytics/yolov5

yolov5 镜像详细信息

yolov5 镜像标签列表

yolov5 镜像使用说明

yolov5 镜像拉取命令

Docker 镜像加速服务

轩辕镜像平台优势

镜像下载指南

相关 Docker 镜像推荐

YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite
74 收藏0 次下载activeultralytics镜像

yolov5 镜像详细说明

yolov5 使用指南

yolov5 配置说明

yolov5 官方文档

中文 | 한국어 | 日本語 | Русский | Deutsch | Français | Español | Português | हिन्दी | العربية

YOLOv5 CI YOLOv5 Citation Docker Pulls
Run on Gradient Open In Colab Open In Kaggle

YOLOv5 🚀 is the world's most loved vision AI, representing Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.

We hope that the resources here will help you get the most out of YOLOv5. Please browse the YOLOv5 Docs for details, raise an issue on GitHub for support, and join our *** community for questions and discussions!

To request an Enterprise License please complete the form at Ultralytics Licensing.

Ultralytics GitHub Ultralytics LinkedIn Ultralytics *** Ultralytics *** Ultralytics *** Ultralytics Instagram Ultralytics ***

YOLOv8 🚀 NEW

We are thrilled to announce the launch of Ultralytics YOLOv8 🚀, our NEW cutting-edge, state-of-the-art (SOTA) model released at [*] YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.

See the YOLOv8 Docs for details and get started with:

![PyPI version]([] ![Downloads]([]

bash
pip install ultralytics

Documentation

See the YOLOv5 Docs for full documentation on training, testing and deployment. See below for quickstart examples.

Install

Clone repo and install requirements.txt in a Python>=3.8.0 environment, including PyTorch>=1.8.

bash
git clone [***]  # clone
cd yolov5
pip install -r requirements.txt  # install
Inference

YOLOv5 PyTorch Hub inference. Models download automatically from the latest YOLOv5 release.

python
import torch

# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s")  # or yolov5n - yolov5x6, custom

# Images
img = "[***]"  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
Inference with detect.py

detect.py runs inference on a variety of sources, downloading models automatically from the latest YOLOv5 release and saving results to runs/detect.

bash
python detect.py --weights yolov5s.pt --source 0                               # webcam
                                               img.jpg                         # image
                                               vid.mp4                         # video
                                               screen                          # screenshot
                                               path/                           # directory
                                               list.txt                        # list of images
                                               list.streams                    # list of streams
                                               'path/*.jpg'                    # glob
                                               '[***]  # ***
                                               'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
Training

The commands below reproduce YOLOv5 COCO results. Models and datasets download automatically from the latest YOLOv5 release. Training times for YOLOv5n/s/m/l/x are 1/2/4/6/8 days on a V100 GPU (Multi-GPU times faster). Use the largest --batch-size possible, or pass --batch-size -1 for YOLOv5 AutoBatch. Batch sizes shown for V100-16GB.

bash
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml  --batch-size 128
                                                                 yolov5s                    64
                                                                 yolov5m                    40
                                                                 yolov5l                    24
                                                                 yolov5x                    16
Tutorials
  • Train Custom Data 🚀 RECOMMENDED
  • Tips for Best Training Results ☘️
  • Multi-GPU Training
  • PyTorch Hub 🌟 NEW
  • TFLite, ONNX, CoreML, TensorRT Export 🚀
  • NVIDIA Jetson platform Deployment 🌟 NEW
  • Test-Time Augmentation (TTA)
  • Model Ensembling
  • Model Pruning/Sparsity
  • Hyperparameter Evolution
  • Transfer Learning with Frozen Layers
  • Architecture Summary 🌟 NEW
  • Roboflow for Datasets, Labeling, and Active Learning
  • ClearML Logging 🌟 NEW
  • YOLOv5 with Neural Magic's Deepsparse 🌟 NEW
  • Comet Logging 🌟 NEW

Integrations




RoboflowClearML ⭐ NEWComet ⭐ NEWNeural Magic ⭐ NEW
Label and export your custom datasets directly to YOLOv5 for training with RoboflowAutomatically track, visualize and even remotely train YOLOv5 using ClearML (open-source!)Free forever, Comet lets you save YOLOv5 models, resume training, and interactively visualise and debug predictionsRun YOLOv5 inference up to 6x faster with Neural Magic DeepSparse

Ultralytics HUB

Experience seamless AI with Ultralytics HUB ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly Ultralytics App. Start your journey for Free now!

Environments

Get started in seconds with our verified environments. Click each icon below for details.

Contribute

We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our Contributing Guide to get started, and fill out the YOLOv5 Survey to send us feedback on your experiences. Thank you to all our contributors!

License

Ultralytics offers two licensing options to accommodate diverse use cases:

  • AGPL-3.0 License: This OSI-approved open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the LICENSE file for more details.
  • Enterprise License: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through Ultralytics Licensing.

Contact

For YOLOv5 bug reports and feature requests please visit GitHub Issues, and join our *** community for questions and discussions!


Ultralytics GitHub Ultralytics LinkedIn Ultralytics *** Ultralytics *** Ultralytics *** Ultralytics Instagram Ultralytics ***

用户好评

来自真实用户的反馈,见证轩辕镜像的优质服务

oldzhang的头像

oldzhang

运维工程师

Linux服务器

5

"Docker加速体验非常流畅,大镜像也能快速完成下载。"